

Nanostructure growth, characterization and applications

Control and characterization of self-assembled Ge quantum dots grown by pulsed laser deposition

Mohammed Hegazy & Hani Elsayed-Ali

mhegazy@odu.edu helsayed@odu.edu

Old Dominion University, Physical Electronics Research Institute, Electrical and Computer Engineering Department, Norfolk, VA-23529

Abstract

- Growth dynamics and morphology of self-assembled Ge QD on Si(100)-(2x1) by nanosecond PLD
- *In situ* RHEED and post deposition AFM
- Effects of laser fluence and substrate temperature on QD
- 3x laser fluence $\rightarrow 20x$ QD density & 0.3x average size

 \rightarrow shape: large huts \rightarrow domes

• Temperature effect:

150 °C: misaligned QDs

400 °C & 500 °C: oriented huts and domes

600 °C: QDs on textured surfaces

Nanostructure growth, characterization and applications

Pulsed Laser Deposition (PLD)

- (1) Target
- (2) Substrate
- (3) Ablated species "Plume"
- (4) Focused laser
- (5) Electron probe
- (6) Diffracted electrons
- (7) Electron gun
- (8) Phosphor screen
- (9) CCD camera
- (10) Focusing lens
- (11) Ultrahigh vacuum chamber
- (12) Substrate manipulator
- (13) Target manipulator

Self-assembly of Ge QDs on Si(100)-2x1

- Stranski-Krastanow (SK) growth in lattice-mismatched systems
- Epitaxial layer first formed
- Strain increases with film thickness
- At critical thickness → 3D relieves strain
- Hut clusters first form
- Huts → domes with growth

Nanostructure growth, characterization and applications

I. Ge QD growth dynamics by PLD

Nanostructure growth, characterization and applications

RHEED monitors growth dynamics

Deposition at 400 °C, 23 J/cm2, 10 Hz. (a) (2×1) substrate, (b) ~3.3 ML, (c) ~4.1 ML, (d) ~6 ML, (e) ~9.3 ML, and (f) ~13 ML

Nanostructure growth, characterization and applications

Morphology studied by ex-situ AFM

QD lateral and height aspect ratios

Variation of contact angle with QD height

Nanostructure growth, characterization and applications

II. Effect of laser fluence

Shape, size and density change with fluence

Deposition parameters: 400 °C, 10 Hz and column (a) 23 J/cm2, column (b) 47 J/cm2, column (c) 70 J/cm2

Nanostructure growth, characterization and applications

Shape, size and density change with fluence

400

200

0

Major length (nm) 400 °C, 10 Hz and column (a) 23 J/cm², column (b) 47 J/cm², column (c) 70 J/cm²

800

1000

600

Nanostructure growth, characterization and applications

III. Effect of temperature

Nanostructure growth, characterization and applications

RHEED detection of temperature effect

Temperature effect

(a) 150 °C, (b) 400 °C, (c) 500 °C, (d) 600 °C

Summary

- Growth dynamics of PLD of Ge QDs on Si(100)-(2x1) was studied by RHEED and AFM
- When the laser fluence is tripled, the QD density increased ~20 times, while the average lateral size decreased >3.5 times
- The shape also changed from large huts, observed at 23 J/cm², to domes observed at the highest fluence
- At 150 °C, misaligned QDs formed resulting in diffused RHEED pattern. At 400 °C and 500 °C, transmission RHEED patterns were observed indicating the growth of oriented hut and dome QDs. Around 600 °C, the QDs were formed on top of some textured surfaces

For detailed information

- 1. M. S. Hegazy and H. E. Elsayed-Ali, "Growth of Ge quantum dots on Si by pulsed laser deposition," J. Appl. Phys. 99, 53408 (2006) [Selected to appear on the Virtual Journal of Nanoscience and Technology, Vol. 13(11) (2006)].
- 2. M. S. Hegazy and H. E. Elsayed-Ali, "Self-assembly of Ge quantum dots on **Si(100)** by pulsed laser deposition," Appl. Phys. Lett. **86**, 243204 (2005) [Selected to appear on the Virtual Journal of Nanoscience and Technology, Vol. 11, Issue 24, 2005].
- 3. M. S. Hegazy, T. R. Refaat, M. N. Abedin, H. E. Elsayed-Ali, "Fabrication of GeSi quantum dot infrared photodetector by pulsed laser deposition," Optical Eng. Lett., **44(5)**, 59702 (2005)
- 4. M. S. Hegazy and H. E. Elsayed-Ali, "Quantum-dot infrared photodetector fabrication by pulsed laser deposition technique," J. Laser Micro/Nanoengineering, in press.